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Heat-transfer coefficients are calculated for forced convection from a heated 
flat plate, of finite breadth and infinite span, at zero incidence to a steady stream 
of viscous, incompressible fluid. The complete range of the Reynolds number R is 
consideredand the resultsfor large Rare comparedwith the Pohlhausenboundary- 
layer solution for a plate of infinite breadth with the Blasius velocity field. 

It is found that the heat transfer from the trailing edge of the plate is important 
for small Reynolds numbers but steadily diminishes as R increases. The limiting 
value of the heat-transfer coefficient at  the leading edge agrees to good accuracy 
with Pohlhausen’s result and the corresponding overall heat-transfer coefficient 
is within 3 %  of Pohlhausen’s value for an equal length of the infinite plate 
measured from the leading edge. The results over the whole Reynolds-number 
range are probably correct to this order of accuracy. 

The Reynolds analogy between skin friction and heat transfer, exactly true 
at large Reynolds numbers, is found to be inadequate a t  small values of R, as 
may then be expected, due to the existence of a pressure gradient parallel to  the 
plate. 

Introduction 
The problem considered is that of finding the theoretical temperature field 

T(x,  y )  in a viscous, incompressible fluid in steady two-dimensional motion 
past a flat plate of finite breadth 2c, whose cross-section occupies the position 
y = 0, - c  , < x < c, where (x, y )  are Cartesian co-ordinates. The fluid properties 
are assumed to be independent of temperature, and heat dissipation within the 
fluid is neglected. If forced convection only is assumed, the governing equation 
is a2T a=T aT aT 

-f- = pc. 
ax2 ay2 1% 

Here p, cp  and 1% are respectively the density, specific heat at constant pressure, 
and the coefficient of thermal conductivity of the fluid; also (u, v) are the compon- 
ents of velocity. The plate is assumed to be maintained at surface temperature 
TI;  and at large distances from it,  where the flow reduces to SL uniform stream 
u = U ,  v = 0,  the temperature is assumed to be uniform and equal to To. 

For two-dimensional motion a stream function exists. For the finite flat 
plate at zero incidence, Dennis Q Dunwoody (1966) have shown how to calculate 
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the dimensionless stream function $( = 11 Uc times the dimensional stream func- 

tion) in the form al 

$(t, 7) = c fn(5) sin n7, ( 2 )  
w=l 

where (f, y) are elliptic co-ordinates defined by the transformation 

x = ccoshccosy, y = csinhfsinq. (3) 

This transformation maps the upper half of the xy-plane (which by symmetry 
is all that need be considered) into the semi-infinite strip [ 2 0, 0 < y < n-. 
The plate transforms to = 0, with leading edge at  y = n- and trailing edge at 
7 = 0. In  terms of the dimensionless stream function $ and the temperature 
function 

equation (1)  becomes V2Q = +Ra - - - - - (::;: :;:;)’ 
(41 

where V2 = P / a t 2 +  a2/ay2. Here 

R = ~ c U / V ,  g = pvc,/k 

are the Reynolds and Prandtl numbers, respectively, v being the coefficient of 
kinematical viscosity. The boundary conditions are that 

8 =  1, when c =  0; 

Q + O ,  as f-+co. 

A boundary-layer solution to the forced convection problem has been given 
by Pohlhausen (1921) for a plate of infinite breadth at high Reynolds numbers. 
The finite plate has not previously been considered a t  any Reynolds number, 
so that, for example, no previous results are available on the effect of the trailing 
edge. In the present paper the stream function calculated by Dennis & Dun- 
woody in the form (2) over the range R = 0-1 to co is used to obtain solutions of 
the heat-transfer equation (5). The variation of heat transfer along the plate is 
calculated, and, in particular, results for the heat-transfer coefficients aL and 
aT a t  the leading and trailing edges are presented in the form 

where X is distance measured along the plate from the leading edge. The mean 
Nusselt number N is expressed as 

N = C(R,  ~ r )  Ri. (8) 

The coefficients A ,  B and C in these formulae are tabulated in detail as functions 
of R for u = 0-73 (air) and u = 1. It is found that, t o  reasonably numerical 
accuracy, 

for any R and u within the range considered. It can be shown directly from the 
governing equations that (9) is asymptotically correct for fixed R and large 
enough u. Moreover, as R -+ co, C(R,  1) -+ C, an absolute constant. From the 
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numerical results its value is found to be 0.685, about 3 yo higher than Pohl- 
hausen’s value of 0.664. Similar results to (9) hold for A(R,o) and B(R,cr); 
and as R --f co it is found that A(R,  1) -+ 0.332, which agrees with Pohlhausen’s 
value. 

Method of analysis 
Apart from the trivial change of replacing a factor R by Ra, equation (5) for 

8(<,7) is identical with the equation governing the scalar vorticity C(<,q) in 
the problem of steady flow past a flat plate. The essential difference in the prob- 
lems is that 8 and 5 satisfy different boundary conditions, in particular, is an 
odd function of 7 in the range 7 = - n- to 7 = n-, while 0 must clearly be an even 
function. The method used to reduce the equation for 6 to a set of ordinary dif- 
ferential equations in the independent variable < may therefore be adapted to 
the present problem by putting 

0 = Q exp (F(L 7% 

aFp< = 4Ra a$laq, 

Q(<, 7) = go(<) + 2 C g n ( 0  c o s n ~ .  

where P is a solution of the equation 

and expressing q5 in the form 
m 

(10) 
n = l  

Hence gn(,$) (n = 0 ,1 ,2 ,  ...) is effectively the Fourier cosine transform of 
(whereas in the flow problem it is the sine transform) and the reduction of 
(5) to a set of linear differential equations 

m 

g~-n2gn+ E Ic,L,pgp = 0 (n = 0 , 1 , 2  ,...) (11) 
p=o 

follows similar steps to those set out by Dennis & Dunwoody. In  terms of the 
same four functions an(<), bn(<), cn(<) and dn(E), all derived from fn(<),  defined 
in the paper cited, it  may be verified that 

where 

In this formula 

so = 2; 8, = 1 ( p  = 1,2 ,3 ,  ...). 

Mr = d,(dn-p-l. + dn--p+r + dn+p-r +dn+p+r) (13) 

and N, = ar(br+n-p +br-n+p +br-n-p + br+n+p)- (14) 

Negative suffixes are interpreted according to definitions already given (Zoc. cit) .  
Numerical solutions of (1 1) which satisfy the conditions (6) are obtained using 

methods described for the flow problem. A particular solution of the system 
(1 1) is obtained by assuming numerical boundary conditions at  a sufficiently large 
value E0 of <. For > to an approximate solution of (1 1) (asymptotically correct 
as ,$ -+ 00) is obtained using the method of Jeffreys & Jeffreys (1962). This 
approximate solution automatically satisfies the second condition of (6) and it is 
then joined a t  < = to to an inner solution computed using finite-difference 
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methods. Independent numerical solutions of this form, denoted for fixed 
p by the aggregate solution 

S. G. R. Dennis and N .  Smith 

(9P(E)) (n = 0,192, ... ), 
are obtained by making the boundary conditions at c = go distinct for each value 
of p .  These can then be combined into a complete solution of (1 1) which satisfies 
the second condition of (6) by writing 

The constants Cp are then found to satisfy the first condition of (6). Since 
the function F ( [ ,  q )  has been chosen to satisfy the condition 

F(O,r) = 0, 

$ ( O , r )  = 1 the first of (6) requires that 

andhencethat go(0) = 1; g,(O) = 0 (n = 1 , 2 , 3 ,  ...). 

If the series (15) is now substituted, the constants Cp must satisfy the simul- 

taneous equations W \ 

i I; C,g$f)(O) = 1 (n = 0 )  
p=o 

= O  ( n = 1 , 2 , 3  ,... ). 

The gg)(O) are known from the numerical solutions. Hence the constants 
may be found and the solution for q5 arrived at in the form (lo), all the conditions 
of the problem being satisfied. 

Calculated results 

at 
Heat-transfer coefficients a t  the plate are calculated from the value of a6/at 

= 0. This quantity is denoted, for convenience, by G ( 7 ) .  Since 

F = aF/af; = 0 when < = 0, 

n=l 

The numerical calculations were limited to five terms of the series. In  tables 1 
and 2 values of the first five coefficients of the series (17) are given for v = 0.73 
and CT = 1, respectively, over a wide range of Reynolds numbers. The tabulated 
values correspond t o  the coefficients 

h, = -7rR-$g;(O). (18) 

It is clear from the tables that the coefficients h, tend to definite limits as R -+ m; 
and it will now be shown that the definition of h, leads to the result 

h, = C(R,cr). (19) 

The quantity of heat transferred from the plate to the fluid per unit area and 
time at  co-ordinate n is 
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from the transformation (3). If a heat-transfer coefficient a(q) is defined by the 
equation 

then 

R 
0.1 
0.2 
0.4 
1 
2 
4 

10 
20 
40 

100 
500 

1,000 
10,000 
00 

A 
0.661 
0-548 
0.459 
0.395 
0.367 
0.352 
0.344 
0.337 
0.329 
0.319 
0.314 
0.312 
0.303 
0-299 

B 
0.626 
0.493 
0-380 
0.281 
0.223 
0.176 
0.132 
0.101 
0.077 
0.063 
0.057 
0.055 
0,047 
0.045 

h0 
2.022 
1.636 
1.319 
1.064 
0.932 
0.840 
0.7 69 
0.724 
0.692 
0.675 
0.664 
0.658 
0.631 
0.616 

hl 
- 0.028 
- 0.043 
- 0.062 
- 0.089 
-0.113 
- 0.138 
-0.166 
- 0.183 
- 0.192 
- 0.191 
- 0.190 
-0.1s9 
- 0'187 
- 0.185 

- 
- 0.001 
- 0.001 
- 0.002 
- 0.005 
-0.011 
- 0.017 
- 0.024 
- 0'030 
- 0.030 
- 0.029 
- 0.026 
- 0.023 

- 
- 

- 0.001 
- 0-003 
- 0.006 
- 0.010 
- 0.012 
- 0.013 
- 0.014 
- 0-014 

TABLE 1. = 0.73; details of the numerical solution 

- 
- 

- 0.001 
- 0.003 
- 0.008 
- 0.010 
- 0.012 
- 0.014 
- 0.015 

R 

0.1 
0.2 
0.4 
1 
2 
4 

10 
20 
40 

100 
500 

1,000 
10,000 
00 

A 

0.709 
0.593 
0.499 
0.436 
0.409 
0.394 
0.386 
0.377 
0.370 
0.358 
0.350 
0.347 
0.337 
0.332 

B 

0.661 
0.521 
0.398 
0.294 
0.234 
0,184 
0.137 
0.104 
0.082 
0.067 
0.061 
0.059 
0.052 
0.048 

?LO 

2.152 
1.750 
1.41 1 
1.151 
1.018 
0.925 
0.852 
0.804 
0.773 
0.755 
0.73s 
0.731 
0.700 
0.685 

hl 

- 0.037 
- 0.056 
- 0.079 
-0-111 
- 0.137 
- 0.164 
- 0.193 
- 0.210 
-0.218 
-0.216 
- 0'213 
- 0.212 
- 0.209 
- 0.207 

h, 
- 
- 

- 0.001 
- 0.002 
- 0.004 
- 0.008 
- 0.015 
- 0.022 
- 0.028 
- 0'034 
- 0.033 
- 0.032 
- 0.029 
- 0'026 

- 0-001 
- 0.003 
- 0-005 
- 0.008 
- 0-013 
- 0.014 
- 0.014 
- 0.015 
- 0.016 

TABLE 2. = 1;  details of the numerical solution 

- 
- 

- 0.002 
- 0.004 
- 0.010 
- 0.013 
- 0.014 
- 0.016 
- 0.018 

The total rate of heat transfer per unit width from both sides of the plate is 

Q = 2  qdX,  L2c 
and the mean Nusselt number N is then defined by the equation 

Q = 2kN(T, - To). 

Hence 

Comparing this result with (8) establishes (19); and the limit of C(R, 1) as R + co 
is seen from table 2 to be 0.685. 

33 Fluid Mech. 24 



514 8. C. R. Dennis and N .  Smith 

The heat-transfer coefficients uL and aT a t  the leading and trailing edges are 
found by considering the limiting forms of (20) at 7 = r and 7 = 0, respectively. 
First, near 7 = T,  

sin 7 = sin (.n - 7‘) - q’, 
while from (3) x + c = x - +c’1’? 

Hence at  7 = .n “1, = - IC(SCX)-:G(T). 

Comparing this with the first of (7) gives 

A(R,  CT) = - G(n)  R-4. (22) 

3 

2 

1 

0 
~ 

, 025 0 5  0.75 1 .o 
x / 2 c  

FIGURE 1 

Similarly, by expanding for small 7 near 7 = 0, the result 

B(R, V) = - G(O) I?k (23) 

is obtained. These two coefficients are given in tables I and 2 for the respective 
cases CT = 0.73 and (T = 1. 

For small Reynolds numbers it is seen that aT is of considerable importance; 
in fact, as R -+ 0 

a consequence of the fact that the function go(<) then dominates the series (10). 
On the other hand, as R + co, ur diminishes. The limiting value of A(R,  1)  
as R -+ co is 0.332. To this number of figures this agrees exactly with Pohlhausen’s 
boundary-layer value. The variation of heat transfer along the length of the 
plate is shown, for various Reynolds numbers, in figure 1 for the case cr = 0-73 
(air). This has been calculated directly from (20) using the results of table 1. 
The approach to the Pohlhausen solution for large R is clearly seen. 
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Calculations have also been carried out over a range of values of the Prandtl 
number a. Some results for the mean Nusselt number N are given in table 3. 
From these it will be seen that the variation of Na-6 is small for all Reynolds 
numbers and that, for fixed R, this quantity approaches a definite limit as a 
becomes large. Moreover, the limit is approached more rapidly as R becomes 
large and for R > 20 it has been found that the variation of Na-f is insignificant 
for all values of a in the range considered. 

1 8 \" 0 7 3  
R \  
0.2 0.813 0.783 0.601 
0.4 0.927 0.893 0.744 
1 1.182 1.151 1.028 
2 1.464 1.439 1.345 
4 1.866 1.850 1.790 

10 2.700 2.694 2.682 
20 3.596 3.594 3.593 

64 

0,537 
0-690 
0.990 
1.320 
1.780 
2.682 

512 4,096 

0.518 0.515 
0.677 0.677 
0.984 0.984 
1.320 - 
1.780 - 
- - 

TABLE 3. Values of Na-* 

32,768 

These properties follow on account of the well-known fact that a thermal 
boundary layer exists whose thickness, for fixed R, decreases with increasing a. 
This is experienced during the numerical calculations and can, in fact, be demon- 
strated directly from the equations (11). Suppose that a value < = &, (not to 
be confused with 8, in equation (12)) denotes the thermal boundary-layer thick- 
ness. The functions k,,([) in (11)  depend upon fn( [ ) ,  which satisfy the initial 
conditions 

f,(O) = f k ( O )  = 0 (n  = 1 , 2 , 3 ,  ...). 

Assuming that f n ( [ )  can be expanded as Taylor series for 6 < S,, we may write 

f n ( O  = (1/2!) t2f:(0) (1 +O(Sl)} (25) 

within the thermal boundary layer, where fi (0)  depends upon R alone. The 
terms in kn,p(c) ,  equation (12), are of two types, depending respectively on 
R a  and R2a2. If substitution for thef,(<) in the form (25) is made then, as S, -+ 0, 

(26) k,,,(<) = Ra6Pn,. + O ( W  +R2a2E4{~ , ,  + 0(61)}7 
where the constants A , ,  and pn,p are, for fixed n andp, functions of R alone. 

and equations (1 1) become 
The variable 6 is now changed to the new variable t by the relation 6 = S,t, 

From (26), as S, -+ 0, 

If &, is now chosen such that RLTS~ = const. then, for fixed R, 8, = O(d) and the 
functions 6,2 kn,, tend to functions oft alone, i.e. independent of LT but depending 
of course, on R. We may omit the term in n2 in (27) which, for fixed n, tends to 
zero with 8,. Solutions for the gn can then be obtained which are functions of t  

S,2 kn,, N Ra6,3hn,,t + R2a2 S,6pn,,t4. 

33-2 



516 S. C. R. Dennis and I?. Smith 

alone. These determine values of dg,/dt which are independent of u and hence 
the limiting value of the mean Nusselt number N ( R ,  u) is 

N ( R ,  m) = - ns,-l (ag,,pt), = o ( ~ + )  
as IT --f 00. A similar result holds for the local heat-transfer coefficient. 

A limiting solution to the problem may also be considered when, for fixed 
u, R becomes large. There is then a boundary-layer thickness f; = 6 associated 
with the velocity field. If we put f; = a x ,  equations (1 1) become 

These equations may now be considered in the same manner as that previously 
described by Dennis & Dunwoody for the corresponding set of equations in the 
determination of the velocity field. For it is apparent that the k, p ( f ; )  defined 
by (12) depend upon the functions f,(C) in the same manner (although their 
aggregate values are different) as the corresponding quantities in the flow prob- 
lem. Also the Reynolds number occurs explicitly in the same way. Since, as 
R becomes large, 6 = O(R-*), it may be shown, as in the flow problem, that 

i.e, functions of z alone, independent of R but depending on a' in the present case. 
The limiting functions K, , ( z )  are calculated in terms of z from the same formulae 
(12) but with certain modifications in the definitions of the quantities b, and G, 

already noted in the paper cited and, further, with R replaced by the numerical 
constant c' which represents the grouping RPB,, where B, is defined in the paper 
cited and is O(Rg) as R becomes large. 

For fixed n the term in n2 in (28) tends to zero with 6, and limiting solutions for 
the gn can be found as functions of x alone. The limiting value of the mean Nusselt 
number for large R is then 

N(m, V) = - ~ 6 - l  (dg,/dz), = O(Rg), 

with a similar result for the local coefficient. 
If  R and u are both large it follows that 

N N CR*d. (29) 

This can also be deduced directly from the limiting solutions of the equations 
(27). It follows from the high Reynolds-number results for the flow problem 
given by Dennis & Dunwoody that, as R --f co, the quantities and ,IA~,~ in 
(26) are of the order of Rg and R, respectively. Hence if R and cr are both large, 
6,2kw,p in (27) can be made independent of both R and cr by choosing 6, such that 

Rb13,3 = const., 

the limiting solutions of (27) then being independent of both R and g, leading 
at once to (29). It may be noted, however, that it  is not possible to deduce that 
(29) holds for large R and any u since, when R becomes large, we cannot represent 
each f,([) by the leading term in its Taylor series unless, in addition, 6, + 0 
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independently of the behaviour of R, i.e. unless r~ --f 03 also. Nevertheless, the 
numerical results show that N is proportional to CT* for quite small CT if R is large 
enough. For all practical purposes the variation of the local coefficient of heat 
transfer with CT is directly proportional to the corresponding variation of the mean 
coefficient, so that a complete set of results for all R and CT may be deduced 
from the results of tables 1, 2 and 3. 

ho hl h, h% h4 
0.664 - 0.221 - 0.044 - 0.019 - 0.01 1 

TABLE 4. Fourier coefficients according to Pohlhausen's solution 

The limiting results R = 03 in tables 1 and 2 have been calculated by solving 
equations (28) using the velocity field in terms of the co-ordinate z calculated by 
Dennis & Dunwoody. A detailed comparison between these results and the 
Pohlhausen solution may be made in the following way. When CT = 1 the Pohl- 
hausen solution gives the local heat-transfer coefficient as 

a(7) = 0.332k ( U/VX)*,  
with x = c ( l  +cosr/). 
By (20), this leads to the result 

G(7) = - 0.332Rgsin $11 

h, = 0.664/( 1 - 4n2). 

The first five of these coefficients are shown in table 4. The differences between 
them and the corresponding coefficients of table 2 for the case R = 00 are not 
great when measured as a percentage of the mean coefficient h,. It seems, however, 
that although the present calculations determine the heat-transfer coefficient 
at the leading edge accurately for large R, truncation of the series (17) leads to 
an erroneous estimate of the trailing-edge heat transfer. This is indicated by the 
fact that the coefficient B(R, CT) does not vanish when R = 03, whereas it seems 
likely that in theory it should do so. 

and hence from (17) and (18) 

The equation for the velocity component u(2, y) parallel to the plate is 

It is well known (Schlichting 1960) that when the pressure gradient ap/ax = 0 
in (30) and c = 1 in (1) the two equations are analogous and the functions u / U  
and (T - Tl)/(To - TJ, which satisfy similar differential equations with the same 
boundary conditions, are identical. This leads to the Reynolds analogy 

between the heat transfer q and the skin friction psy, and hence by integration 
over the whole plate to 

N = +RC,, (31) 



518 S. C. R. Dennis and N .  Smith 

where C, is the drag coefficient. Using values of C, calculated by Dennis & 
Dunwoody, some values of the ratio RC,I2N are shown in table 5. The accuracy 
to which ( 3 1 )  is satisfied for R = 00 verifies, within the limits of the numerical 
methods, that the calculated velocity field for large R is associated with a zero 
pressure gradient. As R decreases, the effect of the pressure gradient increases 
and ( 3  1)  becomes correspondingly less valid. 

R 0.1 1 10 100 1000 co 

RCDj2N 1.665 1.581 1.388 1-245 1.086 1.014 

TABLE 5. The Reynolds analogy between the total drag coefficient 
and the mean heat transfer coefficient for r~ = 1 

Solution at low Reynolds numbers 
For low Reynolds numbers a solution of (5) may be obtained, following the 

method of Oseen, by taking the stream function to be that for the external 
potential flow past the plate, viz. 

$ = sinh csin y. 
Substituting in (5) and putting 

8 = x exp ($RcT cosh cos 7 )  
leads to the equation 

V2x- 2k2 (Gosh 2<- cos 27) x = 0, ( 3 2 )  

with k = QRc. Separation of the variables in ( 3 2 )  yields, as is well known, 
two ordinary differential equations of Mathieu and modified Mathieu types 
respectively (McLachlan 1947) and a solution for x which is an even function 
of 7 and which ensures that 13 + 0 as 6 -+ CQ is found to be 

W 

Here the notation of McLachlan is adopted and the Pn are arbitrary constants. 
These have to be determined to satisfy the first of the conditions (6). Once this 
has been done we have 

and the terms in the series for G(7)  may be evaluated by equating coefficients 
of cosny (n = 0 , 1 , 2 ,  ...). The whole process is tedious and only the final results 
are quoted. It is found that 

correct to terms in k4, while 

9 2 3  = O(kn) (n * 0). (34) 
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Here S = ,y+log+k, where ,y is Euler’s constant. Equations (33) and (34) 
together tend to confirm the result (24), in agreement with the previous calculated 
results. Some values of the mean Nusselt number calculated from (33) in the 
case u = 1 are compared with the main results of the paper in table 6. These 
indicate that the Oseen solution is adequate only at very low Reynolds numbers. 

R Calculated Oseen R Calculated Oseen 

0.1 0.681 0.698 1 1.151 1.351 
0- 2 0.783 0.822 2 1.440 1.779 
0.4 0.892 0.996 4 1.850 2.765 

TABLE 6. Comparison of N for CT = 1 
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